The Medial Axis of a Multi-Layered Environment and its Application as a Navigation Mesh

نویسندگان

  • Wouter van Toll
  • Atlas F. Cook IV
  • Marc J. van Kreveld
  • Roland Geraerts
چکیده

Path planning for walking characters in complicated virtual environments is a fundamental task in simulations and games. A navigation mesh is a data structure that allows efficient path planning. The Explicit Corridor Map (ECM) is a navigation mesh based on the medial axis. It enables path planning for disk-shaped characters of any radius. In this paper, we formally extend the medial axis (and therefore the ECM) to 3D environments in which characters are constrained to walkable surfaces. Typical examples of such environments are multi-storey buildings, train stations, and sports stadiums. We give improved definitions of a walkable environment (WE: a description of walkable surfaces in 3D) and a multi-layered environment (MLE: a subdivision of a WE into connected layers). We define the medial axis of such environments based on projected distances on the ground plane. For an MLE with n boundary vertices and k connections, we show that the medial axis has size O(n), and we present an improved algorithm that constructs the medial axis in O(n logn log k) time. The medial axis can be annotated with nearest-obstacle information to obtain the ECM navigation mesh. Our implementations show that the ECM can be computed efficiently for large 2D and multi-layered environments, and that it can be used to compute paths within milliseconds. This enables simulations of large virtual crowds of heterogeneous characters in real-time.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-Layered Navigation Meshes

Virtual characters often need to plan visually convincing paths through a complicated environment. For example, a traveler may need to walk from an airport entrance to a staircase, descend the staircase, walk to a shuttle, ride the shuttle to a destination, ride an elevator back to the ground floor, and finally move on the ground floor again to reach the desired airplane. Most previous research...

متن کامل

Realistic Crowd Simulation with Density-Based Path Planning

Virtual characters in games and simulations often need to plan visually convincing paths through a crowded environment. This paper describes how crowd density information can be used to guide a large number of characters through a crowded environment. Crowd density information helps characters avoid congested routes that could lead to traffic jams. It also encourages characters to use a wide va...

متن کامل

The Explicit Corridor Map: Using the Medial Axis for Real-Time Path Planning and Crowd Simulation

We describe and demonstrate the Explicit Corridor Map (ECM), a navigation mesh for path planning and crowd simulation in virtual environments. For a bounded 2D environment with polygonal obstacles, the ECM is the medial axis of the free space annotated with nearest-obstacle information. It can be used to compute short and smooth paths for disk-shaped characters of any radius. It is also well-de...

متن کامل

Real-time density-based crowd simulation

Virtual characters in games and simulations often need to plan visually convincing paths through a crowded environment. This paper describes how crowd density information can be used to guide a large number of characters through a crowded environment. Crowd density information helps characters avoid congested routes that could lead to traffic jams. It also encourages characters to use a wide va...

متن کامل

Real Time Calibration of Strap-down Three-Axis-Magnetometer for Attitude Estimation

Three-axis-magnetometers (TAMs) are widely utilized as a key component of attitude determination subsystems and as such are considered the corner stone of navigation for low Earth orbiting (LEO) space systems. Precise geomagnetic-based navigation demands accurate calibration of the magnetometers. In this regard, a complete online calibration process of TAM is developed in the current research t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017